How to use Pandas to get the count of every combination inclusiveHow to get all possible combinations of a list’s elements?How to get the ASCII value of a character?How to get the current time in PythonHow to get line count cheaply in Python?How do I get the number of elements in a list in Python?How can I count the occurrences of a list item?How to drop rows of Pandas DataFrame whose value in certain columns is NaNHow do I get the row count of a Pandas dataframe?How to iterate over rows in a DataFrame in Pandas?Get list from pandas DataFrame column headersHow to deal with SettingWithCopyWarning in Pandas?
Simulate Bitwise Cyclic Tag
What would happen to a modern skyscraper if it rains micro blackholes?
Is there a minimum number of transactions in a block?
Extreme, but not acceptable situation and I can't start the work tomorrow morning
Is it possible to do 50 km distance without any previous training?
What is the offset in a seaplane's hull?
The magic money tree problem
The use of multiple foreign keys on same column in SQL Server
Is there a familial term for apples and pears?
Chess with symmetric move-square
Why is this code 6.5x slower with optimizations enabled?
Can town administrative "code" overule state laws like those forbidding trespassing?
What is the command to reset a PC without deleting any files
Draw simple lines in Inkscape
Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?
How do you conduct xenoanthropology after first contact?
How old can references or sources in a thesis be?
What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?
What are these boxed doors outside store fronts in New York?
Closed subgroups of abelian groups
Do airline pilots ever risk not hearing communication directed to them specifically, from traffic controllers?
Can Medicine checks be used, with decent rolls, to completely mitigate the risk of death from ongoing damage?
Infinite past with a beginning?
How to make payment on the internet without leaving a money trail?
How to use Pandas to get the count of every combination inclusive
How to get all possible combinations of a list’s elements?How to get the ASCII value of a character?How to get the current time in PythonHow to get line count cheaply in Python?How do I get the number of elements in a list in Python?How can I count the occurrences of a list item?How to drop rows of Pandas DataFrame whose value in certain columns is NaNHow do I get the row count of a Pandas dataframe?How to iterate over rows in a DataFrame in Pandas?Get list from pandas DataFrame column headersHow to deal with SettingWithCopyWarning in Pandas?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;
I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.
For example, I have:
Cust_num Item Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40
This should result in:
Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2
The best I can do is unique combinations:
Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1
I tried:
df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')
But that is just the unique counts.
python pandas
New contributor
add a comment |
I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.
For example, I have:
Cust_num Item Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40
This should result in:
Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2
The best I can do is unique combinations:
Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1
I tried:
df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')
But that is just the unique counts.
python pandas
New contributor
1
I feel like this is one sort of problem pandas would not be suitable for.
– coldspeed
1 hour ago
add a comment |
I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.
For example, I have:
Cust_num Item Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40
This should result in:
Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2
The best I can do is unique combinations:
Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1
I tried:
df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')
But that is just the unique counts.
python pandas
New contributor
I am trying to figure out what combination of clothing customers are buying together. I can figure out the exact combination, but the problem I can't figure out is the count that includes the combination + others.
For example, I have:
Cust_num Item Rev
Cust1 Shirt1 $40
Cust1 Shirt2 $40
Cust1 Shorts1 $40
Cust2 Shirt1 $40
Cust2 Shorts1 $40
This should result in:
Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2
The best I can do is unique combinations:
Combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 1
I tried:
df = df.pivot(index='Cust_num',columns='Item').sum()
df[df.notnull()] = "x"
df = df.loc[:,"Shirt1":].replace("x", pd.Series(df.columns, df.columns))
col = df.stack().groupby(level=0).apply(','.join)
df2 = pd.DataFrame(col)
df2.groupby([0]).size().reset_index(name='counts')
But that is just the unique counts.
python pandas
python pandas
New contributor
New contributor
New contributor
asked 1 hour ago
Taylor SmithTaylor Smith
412
412
New contributor
New contributor
1
I feel like this is one sort of problem pandas would not be suitable for.
– coldspeed
1 hour ago
add a comment |
1
I feel like this is one sort of problem pandas would not be suitable for.
– coldspeed
1 hour ago
1
1
I feel like this is one sort of problem pandas would not be suitable for.
– coldspeed
1 hour ago
I feel like this is one sort of problem pandas would not be suitable for.
– coldspeed
1 hour ago
add a comment |
4 Answers
4
active
oldest
votes
Using pandas.DataFrame.groupby
:
grouped_item = df.groupby('Cust_num')['Item']
subsets = grouped_item.apply(lambda x: set(x)).tolist()
Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
combo = grouped_item.apply(lambda x:','.join(x))
combo = combo.reset_index()
combo['Count']=Count
Output:
Cust_num Item Count
0 Cust1 Shirt1,Shirt2,Shorts1 1
1 Cust2 Shirt1,Shorts1 2
add a comment |
I think you need to create a combination of items first.
How to get all possible combinations of a list’s elements?
I used the function from Dan H's answer.
from itertools import chain, combinations
def all_subsets(ss):
return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
Then get the unique items.
uq_items = df.Item.unique()
list(all_subsets(uq_items))
[(),
('Shirt1',),
('Shirt2',),
('Shorts1',),
('Shirt1', 'Shirt2'),
('Shirt1', 'Shorts1'),
('Shirt2', 'Shorts1'),
('Shirt1', 'Shirt2', 'Shorts1')]
And use groupby
each customer to get their items combination.
ls = []
for _, d in df.groupby('Cust_num', group_keys=False):
# Get all possible subset of items
pi = np.array(list(all_subsets(d.Item)))
# Fliter only > 1
ls.append(pi[[len(l) > 1 for l in pi]])
Then convert to Series
and use value_counts()
.
pd.Series(np.concatenate(ls)).value_counts()
(Shirt1, Shorts1) 2
(Shirt2, Shorts1) 1
(Shirt1, Shirt2, Shorts1) 1
(Shirt1, Shirt2) 1
add a comment |
Late answer, but you can use:
df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns="Cust_num": "Count")
df['Count'] = df['Count'].str.replace(r'Cust','')
combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2
add a comment |
My version which I believe is easier to understand
new_df = df.groupby("Cust_num").agg(lambda x: ''.join(x.unique()))
new_df ['count'] = range(1, len(new_df ) + 1)
Output:
Item Rev count
<lambda> <lambda>
Cust_num
Cust1 Shirt1 Shirt2 Shorts1 $40 1
Cust2 Shirt1 Shorts1 $40 2
Since you do not need the Rev
column, you can drop it:
new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()
new_df
Output:
Cust_num Item count
<lambda>
0 Cust1 Shirt1 Shirt2 Shorts1 1
1 Cust2 Shirt1 Shorts1 2
How is thecount
in your answer the count of inclusive combination ofdf['Item']
? Making new column withrange
is not an answer.
– Chris
10 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55565916%2fhow-to-use-pandas-to-get-the-count-of-every-combination-inclusive%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
Using pandas.DataFrame.groupby
:
grouped_item = df.groupby('Cust_num')['Item']
subsets = grouped_item.apply(lambda x: set(x)).tolist()
Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
combo = grouped_item.apply(lambda x:','.join(x))
combo = combo.reset_index()
combo['Count']=Count
Output:
Cust_num Item Count
0 Cust1 Shirt1,Shirt2,Shorts1 1
1 Cust2 Shirt1,Shorts1 2
add a comment |
Using pandas.DataFrame.groupby
:
grouped_item = df.groupby('Cust_num')['Item']
subsets = grouped_item.apply(lambda x: set(x)).tolist()
Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
combo = grouped_item.apply(lambda x:','.join(x))
combo = combo.reset_index()
combo['Count']=Count
Output:
Cust_num Item Count
0 Cust1 Shirt1,Shirt2,Shorts1 1
1 Cust2 Shirt1,Shorts1 2
add a comment |
Using pandas.DataFrame.groupby
:
grouped_item = df.groupby('Cust_num')['Item']
subsets = grouped_item.apply(lambda x: set(x)).tolist()
Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
combo = grouped_item.apply(lambda x:','.join(x))
combo = combo.reset_index()
combo['Count']=Count
Output:
Cust_num Item Count
0 Cust1 Shirt1,Shirt2,Shorts1 1
1 Cust2 Shirt1,Shorts1 2
Using pandas.DataFrame.groupby
:
grouped_item = df.groupby('Cust_num')['Item']
subsets = grouped_item.apply(lambda x: set(x)).tolist()
Count = [sum(s2.issubset(s1) for s1 in subsets) for s2 in subsets]
combo = grouped_item.apply(lambda x:','.join(x))
combo = combo.reset_index()
combo['Count']=Count
Output:
Cust_num Item Count
0 Cust1 Shirt1,Shirt2,Shorts1 1
1 Cust2 Shirt1,Shorts1 2
answered 1 hour ago
ChrisChris
3,698422
3,698422
add a comment |
add a comment |
I think you need to create a combination of items first.
How to get all possible combinations of a list’s elements?
I used the function from Dan H's answer.
from itertools import chain, combinations
def all_subsets(ss):
return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
Then get the unique items.
uq_items = df.Item.unique()
list(all_subsets(uq_items))
[(),
('Shirt1',),
('Shirt2',),
('Shorts1',),
('Shirt1', 'Shirt2'),
('Shirt1', 'Shorts1'),
('Shirt2', 'Shorts1'),
('Shirt1', 'Shirt2', 'Shorts1')]
And use groupby
each customer to get their items combination.
ls = []
for _, d in df.groupby('Cust_num', group_keys=False):
# Get all possible subset of items
pi = np.array(list(all_subsets(d.Item)))
# Fliter only > 1
ls.append(pi[[len(l) > 1 for l in pi]])
Then convert to Series
and use value_counts()
.
pd.Series(np.concatenate(ls)).value_counts()
(Shirt1, Shorts1) 2
(Shirt2, Shorts1) 1
(Shirt1, Shirt2, Shorts1) 1
(Shirt1, Shirt2) 1
add a comment |
I think you need to create a combination of items first.
How to get all possible combinations of a list’s elements?
I used the function from Dan H's answer.
from itertools import chain, combinations
def all_subsets(ss):
return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
Then get the unique items.
uq_items = df.Item.unique()
list(all_subsets(uq_items))
[(),
('Shirt1',),
('Shirt2',),
('Shorts1',),
('Shirt1', 'Shirt2'),
('Shirt1', 'Shorts1'),
('Shirt2', 'Shorts1'),
('Shirt1', 'Shirt2', 'Shorts1')]
And use groupby
each customer to get their items combination.
ls = []
for _, d in df.groupby('Cust_num', group_keys=False):
# Get all possible subset of items
pi = np.array(list(all_subsets(d.Item)))
# Fliter only > 1
ls.append(pi[[len(l) > 1 for l in pi]])
Then convert to Series
and use value_counts()
.
pd.Series(np.concatenate(ls)).value_counts()
(Shirt1, Shorts1) 2
(Shirt2, Shorts1) 1
(Shirt1, Shirt2, Shorts1) 1
(Shirt1, Shirt2) 1
add a comment |
I think you need to create a combination of items first.
How to get all possible combinations of a list’s elements?
I used the function from Dan H's answer.
from itertools import chain, combinations
def all_subsets(ss):
return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
Then get the unique items.
uq_items = df.Item.unique()
list(all_subsets(uq_items))
[(),
('Shirt1',),
('Shirt2',),
('Shorts1',),
('Shirt1', 'Shirt2'),
('Shirt1', 'Shorts1'),
('Shirt2', 'Shorts1'),
('Shirt1', 'Shirt2', 'Shorts1')]
And use groupby
each customer to get their items combination.
ls = []
for _, d in df.groupby('Cust_num', group_keys=False):
# Get all possible subset of items
pi = np.array(list(all_subsets(d.Item)))
# Fliter only > 1
ls.append(pi[[len(l) > 1 for l in pi]])
Then convert to Series
and use value_counts()
.
pd.Series(np.concatenate(ls)).value_counts()
(Shirt1, Shorts1) 2
(Shirt2, Shorts1) 1
(Shirt1, Shirt2, Shorts1) 1
(Shirt1, Shirt2) 1
I think you need to create a combination of items first.
How to get all possible combinations of a list’s elements?
I used the function from Dan H's answer.
from itertools import chain, combinations
def all_subsets(ss):
return chain(*map(lambda x: combinations(ss, x), range(0, len(ss)+1)))
Then get the unique items.
uq_items = df.Item.unique()
list(all_subsets(uq_items))
[(),
('Shirt1',),
('Shirt2',),
('Shorts1',),
('Shirt1', 'Shirt2'),
('Shirt1', 'Shorts1'),
('Shirt2', 'Shorts1'),
('Shirt1', 'Shirt2', 'Shorts1')]
And use groupby
each customer to get their items combination.
ls = []
for _, d in df.groupby('Cust_num', group_keys=False):
# Get all possible subset of items
pi = np.array(list(all_subsets(d.Item)))
# Fliter only > 1
ls.append(pi[[len(l) > 1 for l in pi]])
Then convert to Series
and use value_counts()
.
pd.Series(np.concatenate(ls)).value_counts()
(Shirt1, Shorts1) 2
(Shirt2, Shorts1) 1
(Shirt1, Shirt2, Shorts1) 1
(Shirt1, Shirt2) 1
answered 37 mins ago
ResidentSleeperResidentSleeper
35210
35210
add a comment |
add a comment |
Late answer, but you can use:
df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns="Cust_num": "Count")
df['Count'] = df['Count'].str.replace(r'Cust','')
combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2
add a comment |
Late answer, but you can use:
df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns="Cust_num": "Count")
df['Count'] = df['Count'].str.replace(r'Cust','')
combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2
add a comment |
Late answer, but you can use:
df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns="Cust_num": "Count")
df['Count'] = df['Count'].str.replace(r'Cust','')
combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2
Late answer, but you can use:
df = df.groupby(['Cust_num'], as_index=False).agg(','.join).drop(columns=['Rev']).set_index(['Item']).rename_axis("combo").rename(columns="Cust_num": "Count")
df['Count'] = df['Count'].str.replace(r'Cust','')
combo Count
Shirt1,Shirt2,Shorts1 1
Shirt1,Shorts1 2
edited 8 mins ago
answered 34 mins ago
Pedro LobitoPedro Lobito
50.5k16138172
50.5k16138172
add a comment |
add a comment |
My version which I believe is easier to understand
new_df = df.groupby("Cust_num").agg(lambda x: ''.join(x.unique()))
new_df ['count'] = range(1, len(new_df ) + 1)
Output:
Item Rev count
<lambda> <lambda>
Cust_num
Cust1 Shirt1 Shirt2 Shorts1 $40 1
Cust2 Shirt1 Shorts1 $40 2
Since you do not need the Rev
column, you can drop it:
new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()
new_df
Output:
Cust_num Item count
<lambda>
0 Cust1 Shirt1 Shirt2 Shorts1 1
1 Cust2 Shirt1 Shorts1 2
How is thecount
in your answer the count of inclusive combination ofdf['Item']
? Making new column withrange
is not an answer.
– Chris
10 mins ago
add a comment |
My version which I believe is easier to understand
new_df = df.groupby("Cust_num").agg(lambda x: ''.join(x.unique()))
new_df ['count'] = range(1, len(new_df ) + 1)
Output:
Item Rev count
<lambda> <lambda>
Cust_num
Cust1 Shirt1 Shirt2 Shorts1 $40 1
Cust2 Shirt1 Shorts1 $40 2
Since you do not need the Rev
column, you can drop it:
new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()
new_df
Output:
Cust_num Item count
<lambda>
0 Cust1 Shirt1 Shirt2 Shorts1 1
1 Cust2 Shirt1 Shorts1 2
How is thecount
in your answer the count of inclusive combination ofdf['Item']
? Making new column withrange
is not an answer.
– Chris
10 mins ago
add a comment |
My version which I believe is easier to understand
new_df = df.groupby("Cust_num").agg(lambda x: ''.join(x.unique()))
new_df ['count'] = range(1, len(new_df ) + 1)
Output:
Item Rev count
<lambda> <lambda>
Cust_num
Cust1 Shirt1 Shirt2 Shorts1 $40 1
Cust2 Shirt1 Shorts1 $40 2
Since you do not need the Rev
column, you can drop it:
new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()
new_df
Output:
Cust_num Item count
<lambda>
0 Cust1 Shirt1 Shirt2 Shorts1 1
1 Cust2 Shirt1 Shorts1 2
My version which I believe is easier to understand
new_df = df.groupby("Cust_num").agg(lambda x: ''.join(x.unique()))
new_df ['count'] = range(1, len(new_df ) + 1)
Output:
Item Rev count
<lambda> <lambda>
Cust_num
Cust1 Shirt1 Shirt2 Shorts1 $40 1
Cust2 Shirt1 Shorts1 $40 2
Since you do not need the Rev
column, you can drop it:
new_df = new_df = new_df.drop(columns=["Rev"]).reset_index()
new_df
Output:
Cust_num Item count
<lambda>
0 Cust1 Shirt1 Shirt2 Shorts1 1
1 Cust2 Shirt1 Shorts1 2
edited 7 mins ago
answered 17 mins ago
Lee MtotiLee Mtoti
13110
13110
How is thecount
in your answer the count of inclusive combination ofdf['Item']
? Making new column withrange
is not an answer.
– Chris
10 mins ago
add a comment |
How is thecount
in your answer the count of inclusive combination ofdf['Item']
? Making new column withrange
is not an answer.
– Chris
10 mins ago
How is the
count
in your answer the count of inclusive combination of df['Item']
? Making new column with range
is not an answer.– Chris
10 mins ago
How is the
count
in your answer the count of inclusive combination of df['Item']
? Making new column with range
is not an answer.– Chris
10 mins ago
add a comment |
Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.
Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.
Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.
Taylor Smith is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55565916%2fhow-to-use-pandas-to-get-the-count-of-every-combination-inclusive%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
I feel like this is one sort of problem pandas would not be suitable for.
– coldspeed
1 hour ago