Proving the given $mathbb R^3/H$ $cong$ $mathbb R^2$ where $H$ = $(y,0,0) The 2019 Stack Overflow Developer Survey Results Are In Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraAre $(mathbbR,+)$ and $(mathbbC,+)$ isomorphic as additive groups?How do I show that these two presentations are isomorphic?Determine whether or not the two given groups are isomorphic.Surjective Homomorphisms of Isomorphic Abelian GroupsGroup isomorphism between two groups .How to use the first isomorphism theorem to show that two groups are isomorphic?Showing that these two groups are isomorphic?Showing that $2$ of the following groups are not isomorphicShow that the Two Given Groups are IsomorphicAre given groups isomorphic
The following signatures were invalid: EXPKEYSIG 1397BC53640DB551
Can the DM override racial traits?
Example of compact Riemannian manifold with only one geodesic.
60's-70's movie: home appliances revolting against the owners
Windows 10: How to Lock (not sleep) laptop on lid close?
How to politely respond to generic emails requesting a PhD/job in my lab? Without wasting too much time
How to read αἱμύλιος or when to aspirate
Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?
Can the Right Ascension and Argument of Perigee of a spacecraft's orbit keep varying by themselves with time?
Does Parliament need to approve the new Brexit delay to 31 October 2019?
Drawing arrows from one table cell reference to another
Why doesn't a hydraulic lever violate conservation of energy?
Why can't devices on different VLANs, but on the same subnet, communicate?
Can we generate random numbers using irrational numbers like π and e?
Visa regaring travelling European country
Is there a writing software that you can sort scenes like slides in PowerPoint?
Sort list of array linked objects by keys and values
What's the point in a preamp?
Variable with quotation marks "$()"
Why are PDP-7-style microprogrammed instructions out of vogue?
First use of “packing” as in carrying a gun
How to support a colleague who finds meetings extremely tiring?
Single author papers against my advisor's will?
Why did Peik Lin say, "I'm not an animal"?
Proving the given $mathbb R^3/H$ $cong$ $mathbb R^2$ where $H$ = y in mathbb R$
The 2019 Stack Overflow Developer Survey Results Are In
Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraAre $(mathbbR,+)$ and $(mathbbC,+)$ isomorphic as additive groups?How do I show that these two presentations are isomorphic?Determine whether or not the two given groups are isomorphic.Surjective Homomorphisms of Isomorphic Abelian GroupsGroup isomorphism between two groups .How to use the first isomorphism theorem to show that two groups are isomorphic?Showing that these two groups are isomorphic?Showing that $2$ of the following groups are not isomorphicShow that the Two Given Groups are IsomorphicAre given groups isomorphic
$begingroup$
So I am given a group $mathbb R^3$ and a group $H$ = y in mathbb R$. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
$endgroup$
add a comment |
$begingroup$
So I am given a group $mathbb R^3$ and a group $H$ = y in mathbb R$. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
$endgroup$
add a comment |
$begingroup$
So I am given a group $mathbb R^3$ and a group $H$ = y in mathbb R$. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
$endgroup$
So I am given a group $mathbb R^3$ and a group $H$ = y in mathbb R$. I have to prove that that $mathbb R^3/H$ $cong$ $mathbb R^2$. I am not sure how to even begin. My difficulty is coming up with a map between the two sets. I have already verified that $H unlhd mathbb R^3$. So all I know is $mathbb R^3/H$ is a group. Also, from first isomorphism theorem, I know that the group is isomorphic to the image of the map $f: mathbb R^3 to A$, and I do not know what that $A$ is supposed to be. Today is the first day I learned about isomorphism, and I am very confused about what is going on. Can anyone provide some help on this?
abstract-algebra group-isomorphism
abstract-algebra group-isomorphism
edited 11 mins ago
YuiTo Cheng
2,4064937
2,4064937
asked 1 hour ago
UfomammutUfomammut
391314
391314
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
add a comment |
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$
$endgroup$
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
56 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
53 mins ago
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-mathbb-r3-h-cong-mathbb-r2-where-h-y-0-0y%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
add a comment |
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
add a comment |
$begingroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
$endgroup$
The first isomorphism theorem asserts that, if $varphi: Ato B$ is a surjective homomorphism, then $Bcong A/kervarphi$. In your problem, you wish to show $mathbb R^2congmathbb R^3/H $, so a natural guess would be to take $A=mathbb R^3$ and $B=mathbb R^2$. Now it remains to construct the homomorphism so that $kervarphi=H$. I will leave the rest to you.
answered 1 hour ago
lEmlEm
3,4621921
3,4621921
add a comment |
add a comment |
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$
$endgroup$
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
56 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
53 mins ago
add a comment |
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$
$endgroup$
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
56 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
53 mins ago
add a comment |
$begingroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$
$endgroup$
We can use the first isomorphism theorem for groups here as you indicated. Consider the map $f : mathbbR^3 longrightarrow mathbbR^2$ as follows, $f(x,y,z) = (y,y+z)$. First, we show that this map is a well-defined group homomorphism and next show that $H = (y,0,0) $ is its kernel.
If $(x_1,y_1,z_1) = (x_2,y_2,z_2)$ then $f(x_1,y_1,z_1) = f(x_2,y_2,z_2)$ hence map is well defined.
Next we show this map is homomorphism. $f((x_1,y_1,z_1) + (x_2,y_2,z_2)) = f(x_1+x_2,y_1+y_2,z_1+z_2) = (y_1+y_2, (y_1+y_2)+(z_1+z_2)) = (y_1+y_2, (y_1+z_1)+(y_2+z_2) = (y_1,y_1+z_1) + (y_2,y_2+z_2) = f(x_1,y_1,z_1) +f(x_2,y_2,z_2). textMoreover, f(0,0,0) = (0,0)$
The kernel of this map is seen to be all $(x,y,z) in mathbbR$ such that $y,z$ are $0$ , i.e., $H$.
Hence first isomorphism theorem applies and $ mathbbR^3/H equiv mathbbR^2.$
edited 39 mins ago
answered 58 mins ago
Mayank MishraMayank Mishra
1068
1068
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
56 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
53 mins ago
add a comment |
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
56 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
53 mins ago
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
56 mins ago
$begingroup$
I came up with something similar, but what about the map $f((x,y,z)) = (y,z)$? I think this one should be fine too, right?
$endgroup$
– Ufomammut
56 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
53 mins ago
$begingroup$
Yes, that will also work.
$endgroup$
– Mayank Mishra
53 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185816%2fproving-the-given-mathbb-r3-h-cong-mathbb-r2-where-h-y-0-0y%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown