Can this equation be simplified further? The Next CEO of Stack OverflowHow can this trig equation be simplified?Can this be simplified?How can this equation be simplified this way? Transmission line: ZinTaking the integral of a strange function.Evaluating Complex ExpressionsHow should trigonometric expressions be simplified?How can we show $cos^6x+sin^6x=1-3sin^2x cos^2x$?Roots of complex quadratic polynomialCan $Asin^2t + Bsin tcos t + Csin t + Dcos t + E = 0$ be solved algebraically?How was this equation simplified?
Bartok - Syncopation (1): Meaning of notes in between Grand Staff
How to check if all elements of 1 list are in the *same quantity* and in any order, in the list2?
Are police here, aren't itthey?
Method for adding error messages to a dictionary given a key
Poetry, calligrams and TikZ/PStricks challenge
Why is information "lost" when it got into a black hole?
Why didn't Khan get resurrected in the Genesis Explosion?
Is there always a complete, orthogonal set of unitary matrices?
The past simple of "gaslight" – "gaslighted" or "gaslit"?
How to count occurrences of text in a file?
Domestic-to-international connection at Orlando (MCO)
Can MTA send mail via a relay without being told so?
Why do remote US companies require working in the US?
What happened in Rome, when the western empire "fell"?
Legal workarounds for testamentary trust perceived as unfair
How to invert MapIndexed on a ragged structure? How to construct a tree from rules?
Running a General Election and the European Elections together
Why doesn't UK go for the same deal Japan has with EU to resolve Brexit?
Grabbing quick drinks
Which one is the true statement?
How to prove a simple equation?
How to get from Geneva Airport to Metabief, Doubs, France by public transport?
What did we know about the Kessel run before the prequels?
Is a distribution that is normal, but highly skewed considered Gaussian?
Can this equation be simplified further?
The Next CEO of Stack OverflowHow can this trig equation be simplified?Can this be simplified?How can this equation be simplified this way? Transmission line: ZinTaking the integral of a strange function.Evaluating Complex ExpressionsHow should trigonometric expressions be simplified?How can we show $cos^6x+sin^6x=1-3sin^2x cos^2x$?Roots of complex quadratic polynomialCan $Asin^2t + Bsin tcos t + Csin t + Dcos t + E = 0$ be solved algebraically?How was this equation simplified?
$begingroup$
I'm trying to simplify the following equation:
$y = dfrac1-2exp(-x)cos(x)+exp(-2x)1+2exp(-x)sin(x)-exp(-2x)$
I suspect that a simpler form using complex exponents exists, but I can't find it.
For context, this equation describes the effective conductivity due to the skin effect of a flat conductor as a function of its thickness. I just removed some scale factors for simplicity. The underlying differential equation gives rise to expressions of the form $exp(pm(1+i)x)$, which is where the $sin(x)$ and $cos(x)$ came from.
trigonometry complex-numbers
New contributor
$endgroup$
add a comment |
$begingroup$
I'm trying to simplify the following equation:
$y = dfrac1-2exp(-x)cos(x)+exp(-2x)1+2exp(-x)sin(x)-exp(-2x)$
I suspect that a simpler form using complex exponents exists, but I can't find it.
For context, this equation describes the effective conductivity due to the skin effect of a flat conductor as a function of its thickness. I just removed some scale factors for simplicity. The underlying differential equation gives rise to expressions of the form $exp(pm(1+i)x)$, which is where the $sin(x)$ and $cos(x)$ came from.
trigonometry complex-numbers
New contributor
$endgroup$
add a comment |
$begingroup$
I'm trying to simplify the following equation:
$y = dfrac1-2exp(-x)cos(x)+exp(-2x)1+2exp(-x)sin(x)-exp(-2x)$
I suspect that a simpler form using complex exponents exists, but I can't find it.
For context, this equation describes the effective conductivity due to the skin effect of a flat conductor as a function of its thickness. I just removed some scale factors for simplicity. The underlying differential equation gives rise to expressions of the form $exp(pm(1+i)x)$, which is where the $sin(x)$ and $cos(x)$ came from.
trigonometry complex-numbers
New contributor
$endgroup$
I'm trying to simplify the following equation:
$y = dfrac1-2exp(-x)cos(x)+exp(-2x)1+2exp(-x)sin(x)-exp(-2x)$
I suspect that a simpler form using complex exponents exists, but I can't find it.
For context, this equation describes the effective conductivity due to the skin effect of a flat conductor as a function of its thickness. I just removed some scale factors for simplicity. The underlying differential equation gives rise to expressions of the form $exp(pm(1+i)x)$, which is where the $sin(x)$ and $cos(x)$ came from.
trigonometry complex-numbers
trigonometry complex-numbers
New contributor
New contributor
New contributor
asked 2 hours ago
Maarten BaertMaarten Baert
82
82
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$$y=frac1-2e^-xcos(x)+e^-2x1+2e^-xsin(x)-e^-2xcdotfrace^xe^x=frace^x-2cos(x)+e^-xe^x+2sin(x)-e^-xcdotfracfrac12frac12$$ $$=fracfrace^x+e^-x2-cos(x)frace^x-e^-x2+sin(x)=fraccosh(x)-cos(x)sinh(x)+sin(x)$$
$endgroup$
$begingroup$
Nice! Would it be possible to rewrite this using $tan$ or $tanh$? Unfortunately $sinh(x)$ and $cosh(x)$ cause numerical issues (overflow) for large values of $x$.
$endgroup$
– Maarten Baert
1 hour ago
1
$begingroup$
If you want you can divide the top and bottom by $cosh(x)$ to get a $tanh(x)$ but this makes both the numerator and denominator more complicated.
$endgroup$
– coreyman317
1 hour ago
add a comment |
$begingroup$
After coreyman317's answer and your comment about large values of $x$, you could notice that for $x >24$
$$fraccosh(x)-cos(x)sinh(x)+sin(x) sim coth(x)$$ for an error $ < 10^-10$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Maarten Baert is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168988%2fcan-this-equation-be-simplified-further%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$y=frac1-2e^-xcos(x)+e^-2x1+2e^-xsin(x)-e^-2xcdotfrace^xe^x=frace^x-2cos(x)+e^-xe^x+2sin(x)-e^-xcdotfracfrac12frac12$$ $$=fracfrace^x+e^-x2-cos(x)frace^x-e^-x2+sin(x)=fraccosh(x)-cos(x)sinh(x)+sin(x)$$
$endgroup$
$begingroup$
Nice! Would it be possible to rewrite this using $tan$ or $tanh$? Unfortunately $sinh(x)$ and $cosh(x)$ cause numerical issues (overflow) for large values of $x$.
$endgroup$
– Maarten Baert
1 hour ago
1
$begingroup$
If you want you can divide the top and bottom by $cosh(x)$ to get a $tanh(x)$ but this makes both the numerator and denominator more complicated.
$endgroup$
– coreyman317
1 hour ago
add a comment |
$begingroup$
$$y=frac1-2e^-xcos(x)+e^-2x1+2e^-xsin(x)-e^-2xcdotfrace^xe^x=frace^x-2cos(x)+e^-xe^x+2sin(x)-e^-xcdotfracfrac12frac12$$ $$=fracfrace^x+e^-x2-cos(x)frace^x-e^-x2+sin(x)=fraccosh(x)-cos(x)sinh(x)+sin(x)$$
$endgroup$
$begingroup$
Nice! Would it be possible to rewrite this using $tan$ or $tanh$? Unfortunately $sinh(x)$ and $cosh(x)$ cause numerical issues (overflow) for large values of $x$.
$endgroup$
– Maarten Baert
1 hour ago
1
$begingroup$
If you want you can divide the top and bottom by $cosh(x)$ to get a $tanh(x)$ but this makes both the numerator and denominator more complicated.
$endgroup$
– coreyman317
1 hour ago
add a comment |
$begingroup$
$$y=frac1-2e^-xcos(x)+e^-2x1+2e^-xsin(x)-e^-2xcdotfrace^xe^x=frace^x-2cos(x)+e^-xe^x+2sin(x)-e^-xcdotfracfrac12frac12$$ $$=fracfrace^x+e^-x2-cos(x)frace^x-e^-x2+sin(x)=fraccosh(x)-cos(x)sinh(x)+sin(x)$$
$endgroup$
$$y=frac1-2e^-xcos(x)+e^-2x1+2e^-xsin(x)-e^-2xcdotfrace^xe^x=frace^x-2cos(x)+e^-xe^x+2sin(x)-e^-xcdotfracfrac12frac12$$ $$=fracfrace^x+e^-x2-cos(x)frace^x-e^-x2+sin(x)=fraccosh(x)-cos(x)sinh(x)+sin(x)$$
answered 2 hours ago
coreyman317coreyman317
1,059420
1,059420
$begingroup$
Nice! Would it be possible to rewrite this using $tan$ or $tanh$? Unfortunately $sinh(x)$ and $cosh(x)$ cause numerical issues (overflow) for large values of $x$.
$endgroup$
– Maarten Baert
1 hour ago
1
$begingroup$
If you want you can divide the top and bottom by $cosh(x)$ to get a $tanh(x)$ but this makes both the numerator and denominator more complicated.
$endgroup$
– coreyman317
1 hour ago
add a comment |
$begingroup$
Nice! Would it be possible to rewrite this using $tan$ or $tanh$? Unfortunately $sinh(x)$ and $cosh(x)$ cause numerical issues (overflow) for large values of $x$.
$endgroup$
– Maarten Baert
1 hour ago
1
$begingroup$
If you want you can divide the top and bottom by $cosh(x)$ to get a $tanh(x)$ but this makes both the numerator and denominator more complicated.
$endgroup$
– coreyman317
1 hour ago
$begingroup$
Nice! Would it be possible to rewrite this using $tan$ or $tanh$? Unfortunately $sinh(x)$ and $cosh(x)$ cause numerical issues (overflow) for large values of $x$.
$endgroup$
– Maarten Baert
1 hour ago
$begingroup$
Nice! Would it be possible to rewrite this using $tan$ or $tanh$? Unfortunately $sinh(x)$ and $cosh(x)$ cause numerical issues (overflow) for large values of $x$.
$endgroup$
– Maarten Baert
1 hour ago
1
1
$begingroup$
If you want you can divide the top and bottom by $cosh(x)$ to get a $tanh(x)$ but this makes both the numerator and denominator more complicated.
$endgroup$
– coreyman317
1 hour ago
$begingroup$
If you want you can divide the top and bottom by $cosh(x)$ to get a $tanh(x)$ but this makes both the numerator and denominator more complicated.
$endgroup$
– coreyman317
1 hour ago
add a comment |
$begingroup$
After coreyman317's answer and your comment about large values of $x$, you could notice that for $x >24$
$$fraccosh(x)-cos(x)sinh(x)+sin(x) sim coth(x)$$ for an error $ < 10^-10$
$endgroup$
add a comment |
$begingroup$
After coreyman317's answer and your comment about large values of $x$, you could notice that for $x >24$
$$fraccosh(x)-cos(x)sinh(x)+sin(x) sim coth(x)$$ for an error $ < 10^-10$
$endgroup$
add a comment |
$begingroup$
After coreyman317's answer and your comment about large values of $x$, you could notice that for $x >24$
$$fraccosh(x)-cos(x)sinh(x)+sin(x) sim coth(x)$$ for an error $ < 10^-10$
$endgroup$
After coreyman317's answer and your comment about large values of $x$, you could notice that for $x >24$
$$fraccosh(x)-cos(x)sinh(x)+sin(x) sim coth(x)$$ for an error $ < 10^-10$
answered 52 mins ago
Claude LeiboviciClaude Leibovici
125k1158135
125k1158135
add a comment |
add a comment |
Maarten Baert is a new contributor. Be nice, and check out our Code of Conduct.
Maarten Baert is a new contributor. Be nice, and check out our Code of Conduct.
Maarten Baert is a new contributor. Be nice, and check out our Code of Conduct.
Maarten Baert is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168988%2fcan-this-equation-be-simplified-further%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown