Why light coming from distant stars is not discreet? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Moderator Election Q&A - Question CollectionPhotons from stars--how do they fill in such large angular distances?Why is light invisible?How “wide” is a beam of light? What is its half-diameter?Photons from stars--how do they fill in such large angular distances?Questions About The Delayed Choice Quantum Eraser ExperimentWhy can I see a beam of light coming in through the window sometimes, but not all the time?What's the origin of the four rays that come out of the reflection of candlelight in our TV?Does law of inertia has anything to do with speed of light?Gaps between adjacent light rays from a light sourceDiffraction from the Earths edgeWhy does the Sun appear more round while distant stars can appear more pointed?

Why are Kinder Surprise Eggs illegal in the USA?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

How can I make names more distinctive without making them longer?

How to Merge Multiple Columns in to Two Columns based on Column 1 Value?

Sci-Fi book where patients in a coma ward all live in a subconscious world linked together

Why are there no cargo aircraft with "flying wing" design?

How come Sam didn't become Lord of Horn Hill?

Do I really need recursive chmod to restrict access to a folder?

What is the role of the transistor and diode in a soft start circuit?

Why do we bend a book to keep it straight?

Echoing a tail command produces unexpected output?

Coloring maths inside a tcolorbox

Check which numbers satisfy the condition [A*B*C = A! + B! + C!]

What is a non-alternating simple group with big order, but relatively few conjugacy classes?

Can an alien society believe that their star system is the universe?

List of Python versions

How to align text above triangle figure

Why did the Falcon Heavy center core fall off the ASDS OCISLY barge?

How do I keep my slimes from escaping their pens?

How to bypass password on Windows XP account?

What does this icon in iOS Stardew Valley mean?

Generate an RGB colour grid

String `!23` is replaced with `docker` in command line

What to do with chalk when deepwater soloing?



Why light coming from distant stars is not discreet?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
2019 Moderator Election Q&A - Question CollectionPhotons from stars--how do they fill in such large angular distances?Why is light invisible?How “wide” is a beam of light? What is its half-diameter?Photons from stars--how do they fill in such large angular distances?Questions About The Delayed Choice Quantum Eraser ExperimentWhy can I see a beam of light coming in through the window sometimes, but not all the time?What's the origin of the four rays that come out of the reflection of candlelight in our TV?Does law of inertia has anything to do with speed of light?Gaps between adjacent light rays from a light sourceDiffraction from the Earths edgeWhy does the Sun appear more round while distant stars can appear more pointed?










4












$begingroup$


Imaging the light racing out from distant sun, as beam of light shoots aways is a circular pattern (spherical actually), remembering that, light comes in photons or packets of energy.
so how come is that we do not see "gaps" in the light coming from distant stars as these "rays" should have gaps that are getting farther apart as distance grows
enter image description here










share|cite|improve this question









New contributor




benchuk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Do you see any "gaps" in the light for an ordinary light bulb?
    $endgroup$
    – my2cts
    6 hours ago






  • 1




    $begingroup$
    @my2cts I would assume the OP is asking about very far distances and is coming from the point of view that the area that light could reach is not showered by a continuous distribution of photons
    $endgroup$
    – Aaron Stevens
    6 hours ago











  • $begingroup$
    Possible duplicate of Photons from stars--how do they fill in such large angular distances?
    $endgroup$
    – Harry Johnston
    1 hour ago















4












$begingroup$


Imaging the light racing out from distant sun, as beam of light shoots aways is a circular pattern (spherical actually), remembering that, light comes in photons or packets of energy.
so how come is that we do not see "gaps" in the light coming from distant stars as these "rays" should have gaps that are getting farther apart as distance grows
enter image description here










share|cite|improve this question









New contributor




benchuk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Do you see any "gaps" in the light for an ordinary light bulb?
    $endgroup$
    – my2cts
    6 hours ago






  • 1




    $begingroup$
    @my2cts I would assume the OP is asking about very far distances and is coming from the point of view that the area that light could reach is not showered by a continuous distribution of photons
    $endgroup$
    – Aaron Stevens
    6 hours ago











  • $begingroup$
    Possible duplicate of Photons from stars--how do they fill in such large angular distances?
    $endgroup$
    – Harry Johnston
    1 hour ago













4












4








4


1



$begingroup$


Imaging the light racing out from distant sun, as beam of light shoots aways is a circular pattern (spherical actually), remembering that, light comes in photons or packets of energy.
so how come is that we do not see "gaps" in the light coming from distant stars as these "rays" should have gaps that are getting farther apart as distance grows
enter image description here










share|cite|improve this question









New contributor




benchuk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Imaging the light racing out from distant sun, as beam of light shoots aways is a circular pattern (spherical actually), remembering that, light comes in photons or packets of energy.
so how come is that we do not see "gaps" in the light coming from distant stars as these "rays" should have gaps that are getting farther apart as distance grows
enter image description here







visible-light photons stars vision discrete






share|cite|improve this question









New contributor




benchuk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




benchuk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Qmechanic

108k122001246




108k122001246






New contributor




benchuk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 6 hours ago









benchukbenchuk

1212




1212




New contributor




benchuk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





benchuk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






benchuk is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Do you see any "gaps" in the light for an ordinary light bulb?
    $endgroup$
    – my2cts
    6 hours ago






  • 1




    $begingroup$
    @my2cts I would assume the OP is asking about very far distances and is coming from the point of view that the area that light could reach is not showered by a continuous distribution of photons
    $endgroup$
    – Aaron Stevens
    6 hours ago











  • $begingroup$
    Possible duplicate of Photons from stars--how do they fill in such large angular distances?
    $endgroup$
    – Harry Johnston
    1 hour ago
















  • $begingroup$
    Do you see any "gaps" in the light for an ordinary light bulb?
    $endgroup$
    – my2cts
    6 hours ago






  • 1




    $begingroup$
    @my2cts I would assume the OP is asking about very far distances and is coming from the point of view that the area that light could reach is not showered by a continuous distribution of photons
    $endgroup$
    – Aaron Stevens
    6 hours ago











  • $begingroup$
    Possible duplicate of Photons from stars--how do they fill in such large angular distances?
    $endgroup$
    – Harry Johnston
    1 hour ago















$begingroup$
Do you see any "gaps" in the light for an ordinary light bulb?
$endgroup$
– my2cts
6 hours ago




$begingroup$
Do you see any "gaps" in the light for an ordinary light bulb?
$endgroup$
– my2cts
6 hours ago




1




1




$begingroup$
@my2cts I would assume the OP is asking about very far distances and is coming from the point of view that the area that light could reach is not showered by a continuous distribution of photons
$endgroup$
– Aaron Stevens
6 hours ago





$begingroup$
@my2cts I would assume the OP is asking about very far distances and is coming from the point of view that the area that light could reach is not showered by a continuous distribution of photons
$endgroup$
– Aaron Stevens
6 hours ago













$begingroup$
Possible duplicate of Photons from stars--how do they fill in such large angular distances?
$endgroup$
– Harry Johnston
1 hour ago




$begingroup$
Possible duplicate of Photons from stars--how do they fill in such large angular distances?
$endgroup$
– Harry Johnston
1 hour ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

You are right that single photon detection is a discrete event. But you are under the false assumption that these "rays" are discretely distributed.



Ideally, a photon would have an equal probability of being emitted through any solid angle out of the star. i.e. it is a uniform probability distribution with respect to the solid angle. There aren't single rays that are evenly distributed around the star that the photons travel along.



For a water analogy, it is not like the star is a spherical shower head where photons can only be released from discrete locations. So, even if you might have a different random distribution of photon detection events at different angular locations relative to the star, you will still always see photons (this is neglecting stars that are so far away from us that their light never reaches us due to the expanding universe).



Of course, if you are far enough away you will experience fewer and fewer photons. However this is not limited to certain "rays". This will be true at any angle at a large enough distance.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The question is being asked by somebody who thinks in terms of light rays that are getting farther apart as they go farther from the source, and it is not a wrong way to think about it. So, very few photons going into a vast space ---> big gaps. And indeed photons from a given star arrive very far spaced out, less than one per second into a human eye.
    $endgroup$
    – Kostas
    5 hours ago











  • $begingroup$
    @Kostas But the sparsity of photons is not due to not being along the correct ray. Nevertheless I have added something to my answer about being far away from a star.
    $endgroup$
    – Aaron Stevens
    5 hours ago


















0












$begingroup$

Very good question. Here is a more QM explanation. It is almost the same as if you would (only for your case) take the Sun as an atom, that is surrounded by an electron field as per QM.



Now the wavefunction of the electron describes the probability distribution of the electron being at a certain position in space around the nucleus.



You would think that the electron can only be at certain discrete number of positions? Well as per QM, the answer is no. In simple words, the electron is at a certain energy level around the nucleus as per QM, but inside that energy level, the electron could be anywhere.



Since the atomic system (and the electron) emits the photons, and the electron could be anywhere (inside the certain energy level as per QM) how would you tell where the electron is at the moment of emission?



So you would imagine that the electron could only take certain fixed positions around the nucleus, and emit the photon from those positions. In reality the electron's position is described by the wavefunction, and it is continuous. Simply said, the electron could be anywhere (inside that certain energy level as per QM).



So in your case if you look at just one single atom, and the atom emits photons from far away, the photons will be continuously distributed. There will be no gaps between the photons.



Now if you look at the Sun, which is made of a whole lot of atoms, you can take it analogously, the photons will be distributed continuously.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "151"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    benchuk is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f473187%2fwhy-light-coming-from-distant-stars-is-not-discreet%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    You are right that single photon detection is a discrete event. But you are under the false assumption that these "rays" are discretely distributed.



    Ideally, a photon would have an equal probability of being emitted through any solid angle out of the star. i.e. it is a uniform probability distribution with respect to the solid angle. There aren't single rays that are evenly distributed around the star that the photons travel along.



    For a water analogy, it is not like the star is a spherical shower head where photons can only be released from discrete locations. So, even if you might have a different random distribution of photon detection events at different angular locations relative to the star, you will still always see photons (this is neglecting stars that are so far away from us that their light never reaches us due to the expanding universe).



    Of course, if you are far enough away you will experience fewer and fewer photons. However this is not limited to certain "rays". This will be true at any angle at a large enough distance.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      The question is being asked by somebody who thinks in terms of light rays that are getting farther apart as they go farther from the source, and it is not a wrong way to think about it. So, very few photons going into a vast space ---> big gaps. And indeed photons from a given star arrive very far spaced out, less than one per second into a human eye.
      $endgroup$
      – Kostas
      5 hours ago











    • $begingroup$
      @Kostas But the sparsity of photons is not due to not being along the correct ray. Nevertheless I have added something to my answer about being far away from a star.
      $endgroup$
      – Aaron Stevens
      5 hours ago















    3












    $begingroup$

    You are right that single photon detection is a discrete event. But you are under the false assumption that these "rays" are discretely distributed.



    Ideally, a photon would have an equal probability of being emitted through any solid angle out of the star. i.e. it is a uniform probability distribution with respect to the solid angle. There aren't single rays that are evenly distributed around the star that the photons travel along.



    For a water analogy, it is not like the star is a spherical shower head where photons can only be released from discrete locations. So, even if you might have a different random distribution of photon detection events at different angular locations relative to the star, you will still always see photons (this is neglecting stars that are so far away from us that their light never reaches us due to the expanding universe).



    Of course, if you are far enough away you will experience fewer and fewer photons. However this is not limited to certain "rays". This will be true at any angle at a large enough distance.






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      The question is being asked by somebody who thinks in terms of light rays that are getting farther apart as they go farther from the source, and it is not a wrong way to think about it. So, very few photons going into a vast space ---> big gaps. And indeed photons from a given star arrive very far spaced out, less than one per second into a human eye.
      $endgroup$
      – Kostas
      5 hours ago











    • $begingroup$
      @Kostas But the sparsity of photons is not due to not being along the correct ray. Nevertheless I have added something to my answer about being far away from a star.
      $endgroup$
      – Aaron Stevens
      5 hours ago













    3












    3








    3





    $begingroup$

    You are right that single photon detection is a discrete event. But you are under the false assumption that these "rays" are discretely distributed.



    Ideally, a photon would have an equal probability of being emitted through any solid angle out of the star. i.e. it is a uniform probability distribution with respect to the solid angle. There aren't single rays that are evenly distributed around the star that the photons travel along.



    For a water analogy, it is not like the star is a spherical shower head where photons can only be released from discrete locations. So, even if you might have a different random distribution of photon detection events at different angular locations relative to the star, you will still always see photons (this is neglecting stars that are so far away from us that their light never reaches us due to the expanding universe).



    Of course, if you are far enough away you will experience fewer and fewer photons. However this is not limited to certain "rays". This will be true at any angle at a large enough distance.






    share|cite|improve this answer











    $endgroup$



    You are right that single photon detection is a discrete event. But you are under the false assumption that these "rays" are discretely distributed.



    Ideally, a photon would have an equal probability of being emitted through any solid angle out of the star. i.e. it is a uniform probability distribution with respect to the solid angle. There aren't single rays that are evenly distributed around the star that the photons travel along.



    For a water analogy, it is not like the star is a spherical shower head where photons can only be released from discrete locations. So, even if you might have a different random distribution of photon detection events at different angular locations relative to the star, you will still always see photons (this is neglecting stars that are so far away from us that their light never reaches us due to the expanding universe).



    Of course, if you are far enough away you will experience fewer and fewer photons. However this is not limited to certain "rays". This will be true at any angle at a large enough distance.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited 5 hours ago

























    answered 6 hours ago









    Aaron StevensAaron Stevens

    15.5k42555




    15.5k42555











    • $begingroup$
      The question is being asked by somebody who thinks in terms of light rays that are getting farther apart as they go farther from the source, and it is not a wrong way to think about it. So, very few photons going into a vast space ---> big gaps. And indeed photons from a given star arrive very far spaced out, less than one per second into a human eye.
      $endgroup$
      – Kostas
      5 hours ago











    • $begingroup$
      @Kostas But the sparsity of photons is not due to not being along the correct ray. Nevertheless I have added something to my answer about being far away from a star.
      $endgroup$
      – Aaron Stevens
      5 hours ago
















    • $begingroup$
      The question is being asked by somebody who thinks in terms of light rays that are getting farther apart as they go farther from the source, and it is not a wrong way to think about it. So, very few photons going into a vast space ---> big gaps. And indeed photons from a given star arrive very far spaced out, less than one per second into a human eye.
      $endgroup$
      – Kostas
      5 hours ago











    • $begingroup$
      @Kostas But the sparsity of photons is not due to not being along the correct ray. Nevertheless I have added something to my answer about being far away from a star.
      $endgroup$
      – Aaron Stevens
      5 hours ago















    $begingroup$
    The question is being asked by somebody who thinks in terms of light rays that are getting farther apart as they go farther from the source, and it is not a wrong way to think about it. So, very few photons going into a vast space ---> big gaps. And indeed photons from a given star arrive very far spaced out, less than one per second into a human eye.
    $endgroup$
    – Kostas
    5 hours ago





    $begingroup$
    The question is being asked by somebody who thinks in terms of light rays that are getting farther apart as they go farther from the source, and it is not a wrong way to think about it. So, very few photons going into a vast space ---> big gaps. And indeed photons from a given star arrive very far spaced out, less than one per second into a human eye.
    $endgroup$
    – Kostas
    5 hours ago













    $begingroup$
    @Kostas But the sparsity of photons is not due to not being along the correct ray. Nevertheless I have added something to my answer about being far away from a star.
    $endgroup$
    – Aaron Stevens
    5 hours ago




    $begingroup$
    @Kostas But the sparsity of photons is not due to not being along the correct ray. Nevertheless I have added something to my answer about being far away from a star.
    $endgroup$
    – Aaron Stevens
    5 hours ago











    0












    $begingroup$

    Very good question. Here is a more QM explanation. It is almost the same as if you would (only for your case) take the Sun as an atom, that is surrounded by an electron field as per QM.



    Now the wavefunction of the electron describes the probability distribution of the electron being at a certain position in space around the nucleus.



    You would think that the electron can only be at certain discrete number of positions? Well as per QM, the answer is no. In simple words, the electron is at a certain energy level around the nucleus as per QM, but inside that energy level, the electron could be anywhere.



    Since the atomic system (and the electron) emits the photons, and the electron could be anywhere (inside the certain energy level as per QM) how would you tell where the electron is at the moment of emission?



    So you would imagine that the electron could only take certain fixed positions around the nucleus, and emit the photon from those positions. In reality the electron's position is described by the wavefunction, and it is continuous. Simply said, the electron could be anywhere (inside that certain energy level as per QM).



    So in your case if you look at just one single atom, and the atom emits photons from far away, the photons will be continuously distributed. There will be no gaps between the photons.



    Now if you look at the Sun, which is made of a whole lot of atoms, you can take it analogously, the photons will be distributed continuously.






    share|cite|improve this answer









    $endgroup$

















      0












      $begingroup$

      Very good question. Here is a more QM explanation. It is almost the same as if you would (only for your case) take the Sun as an atom, that is surrounded by an electron field as per QM.



      Now the wavefunction of the electron describes the probability distribution of the electron being at a certain position in space around the nucleus.



      You would think that the electron can only be at certain discrete number of positions? Well as per QM, the answer is no. In simple words, the electron is at a certain energy level around the nucleus as per QM, but inside that energy level, the electron could be anywhere.



      Since the atomic system (and the electron) emits the photons, and the electron could be anywhere (inside the certain energy level as per QM) how would you tell where the electron is at the moment of emission?



      So you would imagine that the electron could only take certain fixed positions around the nucleus, and emit the photon from those positions. In reality the electron's position is described by the wavefunction, and it is continuous. Simply said, the electron could be anywhere (inside that certain energy level as per QM).



      So in your case if you look at just one single atom, and the atom emits photons from far away, the photons will be continuously distributed. There will be no gaps between the photons.



      Now if you look at the Sun, which is made of a whole lot of atoms, you can take it analogously, the photons will be distributed continuously.






      share|cite|improve this answer









      $endgroup$















        0












        0








        0





        $begingroup$

        Very good question. Here is a more QM explanation. It is almost the same as if you would (only for your case) take the Sun as an atom, that is surrounded by an electron field as per QM.



        Now the wavefunction of the electron describes the probability distribution of the electron being at a certain position in space around the nucleus.



        You would think that the electron can only be at certain discrete number of positions? Well as per QM, the answer is no. In simple words, the electron is at a certain energy level around the nucleus as per QM, but inside that energy level, the electron could be anywhere.



        Since the atomic system (and the electron) emits the photons, and the electron could be anywhere (inside the certain energy level as per QM) how would you tell where the electron is at the moment of emission?



        So you would imagine that the electron could only take certain fixed positions around the nucleus, and emit the photon from those positions. In reality the electron's position is described by the wavefunction, and it is continuous. Simply said, the electron could be anywhere (inside that certain energy level as per QM).



        So in your case if you look at just one single atom, and the atom emits photons from far away, the photons will be continuously distributed. There will be no gaps between the photons.



        Now if you look at the Sun, which is made of a whole lot of atoms, you can take it analogously, the photons will be distributed continuously.






        share|cite|improve this answer









        $endgroup$



        Very good question. Here is a more QM explanation. It is almost the same as if you would (only for your case) take the Sun as an atom, that is surrounded by an electron field as per QM.



        Now the wavefunction of the electron describes the probability distribution of the electron being at a certain position in space around the nucleus.



        You would think that the electron can only be at certain discrete number of positions? Well as per QM, the answer is no. In simple words, the electron is at a certain energy level around the nucleus as per QM, but inside that energy level, the electron could be anywhere.



        Since the atomic system (and the electron) emits the photons, and the electron could be anywhere (inside the certain energy level as per QM) how would you tell where the electron is at the moment of emission?



        So you would imagine that the electron could only take certain fixed positions around the nucleus, and emit the photon from those positions. In reality the electron's position is described by the wavefunction, and it is continuous. Simply said, the electron could be anywhere (inside that certain energy level as per QM).



        So in your case if you look at just one single atom, and the atom emits photons from far away, the photons will be continuously distributed. There will be no gaps between the photons.



        Now if you look at the Sun, which is made of a whole lot of atoms, you can take it analogously, the photons will be distributed continuously.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 6 hours ago









        Árpád SzendreiÁrpád Szendrei

        4,2861624




        4,2861624




















            benchuk is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            benchuk is a new contributor. Be nice, and check out our Code of Conduct.












            benchuk is a new contributor. Be nice, and check out our Code of Conduct.











            benchuk is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Physics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f473187%2fwhy-light-coming-from-distant-stars-is-not-discreet%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Isurus Índice Especies | Notas | Véxase tamén | Menú de navegación"A compendium of fossil marine animal genera (Chondrichthyes entry)"o orixinal"A review of the Tertiary fossil Cetacea (Mammalia) localities in wales port taf Museum Victoria"o orixinalThe Vertebrate Fauna of the Selma Formation of Alabama. Part VII. Part VIII. The Mosasaurs The Fishes50419737IDsh85068767Isurus2548834613242066569678159923NHMSYS00210535017845105743

            Wolfenstein 3D Contents Availability Essential improvements Game data Video settings Input settings Audio settings Network VR support Issues fixed Other information System requirements NotesReferences    3D Realms Wolfenstein 3D pageGOG.com Community DiscussionsGOG.com Support PageSteam Community DiscussionsWolfenstein WikiOfficial websiteAmazon.comBethesda.netGamersGateGOG.comGreen Man GamingHumble StoreSteamweb browser versionWolfenstein 3D: Super UpgradesherehereUltraWolfhereWolfMenuECWolf Wolf4SDL WolfGL WinWolf3d NewWolf BetterWolf Sprite Fix and Rotation Project    Wolfenstein 3D VRSplitWolfWolfenstein 3D VRWolfenstein 3D VRWolfenstein 3D VR4DOS command shellFreeDOS's MORE.COMMacBin themthis shim fileWine regeditRELEASE: QUAKE II + III, WOLFENSTEIN 3D, RETURN TO CASTLE WOLFENSTEIN - GOG.com NewsMac Family - Wolfenstein Wiki - WikiaNerdly Pleasures: How many FPS? - DOS Games and Framerates

            Король Коль Исторические данные | Стихотворение | Примечания | Навигацияверсии1 правкаверсии1 правкаA New interpretation of the 'Artognou' stone, TintagelTintagel IslandАрхивировано